

PEUEHNE BAAAU 110 KMMM

ФИЗИЧЕСКАЯ ВЕЛИЧИНА

свойство вещества, тела или явления, которое может быть выражено количественно в виде числа с указанием отличительного признака как основы для сравнения;

энергия — общая количественная мера различных форм движения материи;

наименование величины — энергия;

обозначение величины — E;

наименование единицы измерения величины — джоуль;

обозначение единицы измерения величины — Дж;

система величин — совокупность величин

вместе с совокупностью

непротиворечивых уравнений,

связывающих эти величины;

энергия	энергия (единица)					
(единица)	Дж	эрг	эВ			
1 джоуль (Дж)	1	10 ⁷	6,24×10 ¹⁸			
1 эрг (эрг)	10 ⁻⁷	1	6,24×10 ¹¹			
1 терм. кал (кал _{тх})	4,18	4,18×10 ⁷	2,61×10 ¹⁹			
1 электрон-вольт (эВ)	1,60×10 ⁻¹⁹	1,60×10 ⁻¹²	1			

МЕЖДУНАРОДНАЯ СИСТЕМА ЕДИНИЦ, СИ

в 1960 году XI Генеральной конференцией по мерам и весам на основе метрической системы была разработана и принята **Международная система единиц, СИ**;

СИ SI, фр. Le Système International d'Unités; Система Интернациональная — Международная система единиц физических величин, современный вариант метрической системы;

ОСНОВНЫЕ ЕДИНИЦЫ СИ

в СИ считается, что основные единицы имеют независимую размерность, т.е. ни одна из основных единиц не может быть получена из других:

Физическая величина Единицы СИ						
название обозначение размерность обозначение назв					вание	
Длина, расстояние	d, l	L	M	m	метр	metre, meter
Macca	m	M	КГ	kg	килограмм	kilogram
Время, временной интервал	au, t	Т	С	S	секунда	second
Сила тока	I	I	Α	Α	ампер	ampere
Термодинамическая температура	T	Θ	К	К	кельвин	kelvin
Сила света	J	J	кд	cd	кандела	candela
Количество вещества	n, ν	N	моль	mol	моль	mole
понедельник, 15 июля 2024 г.			https	://IyaminIya	minchemis.wixsite.com	/scientists-site-ru 5

КОЛИЧЕСТВО ВЕЩЕСТВА

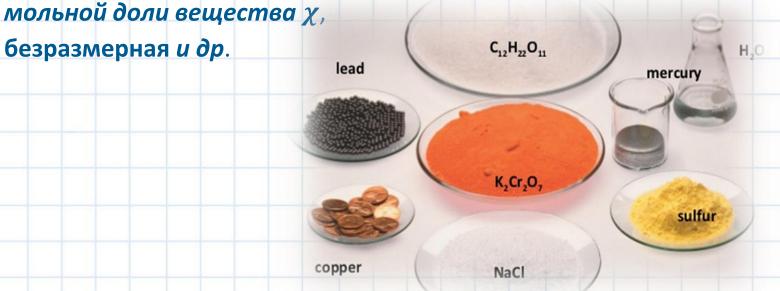
 $m{n}$, моль — физическая величина, определяющая количество структурных единиц: атомов, молекул, ионов, образующих вещество;

безразмерная и др.

один моль, от латинского moles – масса, равен количеству вещества, содержащему столько же структурных элементов, сколько атомов содержит ¹²С массой 0,012 кг, т.е. **6,022**×**10**²³ — Авогадро число N_A ;

моль служит для образования производных единиц молярных величин:

молярной массы вещества M, кг \cdot моль $^{-1}$; **молярного объёма вещества V_m**, м $^3\cdot$ моль $^{-1}$;

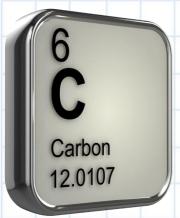

Молярная масса

Молярная масса — это масса данного вещества, взятого в количестве 1 моль:

$$M = m_0 N_A$$
 $\left[M \right] = \left[\frac{\mathrm{K}\Gamma}{\mathrm{MOЛЬ}} \right]$

$$m = m_0 N$$
 $\frac{m}{M} = \frac{m_0 N}{m_0 N_A} \Rightarrow$

$$\frac{m}{M} = \frac{N}{N_A} = \nu$$


1 моль

АТОМНАЯ ЕДИНИЦА МАССЫ

а.е.м., она же дальто́н, Da — внесистемная единица массы равная 1/12 массы нуклида углерода-12, находящегося в основном состоянии; 1 а.е.м., 1 Da на 2006 г. принимает числовое значение рекомендованное Комитетом по данным для науки и техники 1,660538782(83)×10⁻²⁷ кг; масса ¹²С составляет 1,9927×10⁻²⁶ кг.

относительная молекулярная или атомная масса, M_r , A_r — безразмерная величина, равная отношению массы реальной молекулы или конкретного атома к атомной единице массы, следовательно, относительная атомная масса химического элемента численно равна его молярной массе; тогда молярная масса химического соединения численно равна относительной молекулярной массе соединения:

$$m$$
 (H) = 1,674×10⁻²⁷ кг; m (H) = 1 Da; A_r (H) = 1; M (H) = 1 г·моль⁻¹.

$$m \, (\mathsf{H_2O}) = 2,9915 \times 10^{-26} \, \mathrm{кr}; \, m \, (\mathsf{H_2O}) = 18 \, \mathrm{Da}; \, M_r \, (\mathsf{H_2O}) = 18; \, M \, (\mathsf{H_2O}) = 18 \, \mathrm{г} \cdot \mathrm{моль}^{-1}$$

производные единицы

			Единицы измерения		
Величина	Обозначение	Размерность	обозначение	выражение	
площадь	S	L^2	M^2	M^2	
объём	$oldsymbol{V}$	L ³	M ³	M ³	
скорость	υ	LT^{-1}	M/c	$M^{\boldsymbol{\cdot}}C^{-1}$	
ускорение	a	LT^{-2}	M/c ²	M·c ^{−2}	
плотность	ρ	ML^{-3}	Kr/M ³	KL·W ₋₃	
импульс	p	$ m MLT^{-1}$	кг∙м/с	KΓ·M·C ^{−1}	
сила	F	LMT^{-2}	H	Kr·M·c ⁻²	
давление	p	$L^{-1}MT^{-2}$	Па	H·м ⁻²	
мощность	P	L^2MT^{-3}	Вт	Дж·с ⁻¹	
энергия	E	L^2MT^{-2}	Дж	H·M	
теплоёмкость	<i>C</i>	$L^2MT^{-2}\Theta^{-1}$	Дж/К	Дж∙К⁻¹	
концентрация	C_B	$L^{-3}N$	M	моль·м ^{−3}	

ВНЕСИСТЕМНЫЕ ЕДИНИЦЫ

			Единицы измерения	
Величина	Обозначение	Размерность	обозначение	выражение
поверхностное натяжение	σ	MT^{-2}	H/M	H·m ⁻¹
электрический заряд	$oldsymbol{q}$	TI	Кл	c·A
электрический потенциал	φ	$L^2MT^{-3}I^{-1}$	В	Дж·Кл ⁻¹
радиоактивность	\boldsymbol{A}	T^{-1}	Бк	1/c
эффективная доза излучения	D_e	L^2T^{-2}	3в	Дж·кг ⁻¹
масса	m	M	а.е.м., Da	1,66×10 ^{−27} кг
объём	$oldsymbol{V}$	Γ_3	л	$1 \times 10^{-3} \text{ m}^3$
давление	p	$L^{-1}MT^{-2}$	бар	1×10⁵ Па
энергия	\boldsymbol{E}	L^2MT^{-2}	эВ	1,6×10 ⁻¹⁹ Дж

КРАТНЫЕ ПРИСТАВКИ

Приставка		06	бозначение	Пример	
Кратность	русская	международная	русское	международное	
10 ¹	дека	deca	да	da	дал — декалитр
10 ²	гекто	hecto	г	h	гПа — гектопаскаль
10 ³	кило	kilo	К	k	кН — килоньютон
10 ⁶	мега	mega	M	M	МПа — мегапаскаль
10 ⁹	гига	giga	Г	G	ГГц — гигагерц
1012	тера	tera	T	T	ТВ — теравольт
10 ¹⁵	пета	peta	п	Р	Пфлоп — петафлоп
1018	экса	exa	Э	E	ЭБ — эксабайт
10 ²¹	зетта	zetta	3	Z	3эВ — зеттаэлектронвольт
10 ²⁴	йотта	yotta	И	Υ	ИБ — йоттабайт

ДОЛЬНЫЕ ПРИСТАВКИ

		Приставка		Обозначение	Пример
Дольность	русская	международная	русское	международное	
10-1	деци	deci	д	d	дм — дециметр
10-2	санти	centi	С	С	см — сантиметр
10-3	милли	milli	M	m	мН — миллиньютон
10-6	микро	micro	MK	μ, u	мкм — микрометр, микрон
10-9	нано	nano	н	n	нм — нанометр
10 ⁻¹²	пико	pico	п	р	пФ — пикофарад
10 ⁻¹⁵	фемто	femto	ф	f	фс — фемтосекунда
10 ⁻¹⁸	атто	atto	а	а	ас — аттосекунда
10-21	зепто	zepto	3	Z	зКл — зептокулон
10-24	йокто	yocto	И	У	иг — йоктограмм

ПРАВИЛА ОБОЗНАЧЕНИЙ ЕДИНИЦ

- √ обозначения единиц печатают прямым шрифтом, точку как знак сокращения после обозначения не ставят;
- ✓ наименования единиц, образованных от фамилий, не в начале предложения пишется со строчной буквы, а их обозначения всегда пишутся с заглавной буквы, в т.ч. с приставками СИ: ампер А, мегапаскаль МПа, килоньютон кН;
- ✓ обозначения помещают за числовыми значениями величин через пробел, перенос на другую строку не допускается; исключения составляют обозначения в виде надстрочного знака, перед ними пробел не ставится: 10 м; 15°; 100° С;
- ✓ если числовое значение представляет собой дробь с косой чертой, его заключают в скобки: (1/10) моль;
- ✓ обозначения единиц, входящие в произведение, отделяют точками на средней линии: Н·м, Па·с, не допустимо для этой цели использовать символ «×»;
- ✓ в качестве знака деления в обозначениях можно использовать только одну горизонтальную или косую черту; при применении косой черты произведение единиц в знаменателе заключают в скобки; правильно: Вт/(м·К), неправильно: Вт/м/К; Вт/м·К;
- / **не допустимо комбинировать обозначения и наименования единиц**; <mark>правильно: км/ч</mark>; неправильно: км/час;

ПРАВИЛА ОБОЗНАЧЕНИЙ ЕДИНИЦ

- \checkmark обозначения допускается сочетание специальных знаков с буквенными обозначениями: $^{\circ}$ с $^{-1}$ градус в секунду;
- √ допускается применять произведение обозначений единиц, возведённых в положительные и отрицательные степени: A·м², Bт·м⁻²·K⁻¹; не допустимо при использовании отрицательных степеней использовать черту: Bт·м⁻²/К;
- у при указании значений величин с предельными отклонениями их заключают в скобки или проставляют обозначение единицы за числовым значением величины и за её отклонением: $(100,0 \pm 0,1)$ кг; $50 \text{ г} \pm 1 \text{ г}$;
- ✓ обозначения производных единиц, не имеющих специальных наименований, должны содержать минимальное число обозначений единиц СИ со специальными наименованиями и основных единиц с более низкими показателями степени;
 - правильно: кг·м $^{-3}$, неправильно: Па·кг·Дж $^{-1}$; правильно: кг·моль $^{-1}$, неправильно: Дж·с 2 ·м $^{-2}$ ·моль $^{-1}$;
- ✓ допускается обозначение единиц в пояснениях обозначений величин к формулам; не допустимо помещать обозначения единиц в одной строке с формулами, выражающими зависимости между числовыми значениями и величинами, в буквенной форме:
 - правильно: $M=10^{-3}~m/n$, где M- молярная масса, кг·моль $^{-1}$; m- масса г; n- количество вещества моль; неправильно: M (кг·моль $^{-1}$) $=10^{-3}~m$ (г)/n(моль), где M- молярная масса, m- масса, г; n- количество моль;

ПРАВИЛА ОБОЗНАЧЕНИЙ ЕДИНИЦ

- ✓ приставки следует писать слитно с наименованием единицы или, соответственно, с её обозначением;
- ✓ использование двух или более приставок подряд не разрешается: микромиллифарад;
- ✓ обозначения кратных и дольных единиц исходной единицы, возведённой в степень, образуют добавлением соответствующего показателя степени к обозначению кратной или дольной единицы исходной единицы, причём показатель означает возведение в степень кратной или дольной единицы вместе с приставкой:
 1 км² = (10³ м)² = 10⁶ м², а не 10³ м²; наименования таких единиц образуют, присоединяя приставку к наименованию исходной единицы: квадратный километр, а не килоквадратный метр;
- \checkmark использовать приставки следует в соответствии со степенной формой представления чисел: 5320 м = 5.32×10^3 м =
- √ приставку выбирают таким образом, чтобы число, стоящее перед приставкой, находилось в диапазоне от 0,1 до 1000.

КОНВЕРТИРОВАНИЕ ЕДИНИЦ

1. По каналам СМИ был передан необычный прогноз погоды:

- · температура воздуха семьдесят семь градусов по Фаренгейту;
- атмосферное давление один бар;
- влажность воздуха шестьдесят восемь сотых;
- направление ветра норд-ост;
- · средняя температура воды в мировом океане— двести семьдесят восемь целых пятнадцать сотых градусов Кельвина;
- · скорость ветра полтора миллиона дюймов в час;
- · суточное количество осадков два умноженное на десять в седьмой степени нанометров;
- · среднесуточная потребность человека в энергии восемьдесят девять килоджоулей на один килограмм веса.

Как, по-вашему, должен был бы звучать данный прогноз сегодня?

Ответ:

ПРАВИЛА ОКРУГЛЕНИЯ ЧИСЕЛ

- 1. Если первая из отбрасываемых цифр меньше чем «5», то цифра предыдущего разряда не изменяется.
- 2. Если первая из отбрасываемых цифр больше чем «5», то цифра предыдущего разряда увеличивается на единицу.
- 3. Если отбрасываются несколько цифр и первая из отбрасываемых цифр «5», то цифра предыдущего разряда увеличивается на единицу.
- 4. Если отбрасывается только одна цифра «5», а за ней нет цифр, то округление производится до ближайшего чётного числа, т. е. остаётся неизменной, если она чётная, и увеличивается на единицу, если нечётная.

 $6,527 \approx 6,5$; $2,195 \approx 2,2$; $0,950 \approx 1,0$; $0,850 \approx 0,8$; $0,456 \approx 0,5$; $1,45 \approx 1,4$

ПРАВИЛА ЗАПИСИ РЕЗУЛЬТАТОВ ВЫЧИСЛЕНИЙ

погрешности измерения должны содержать не более двух значащих цифр: если первая значащая цифра «1», «2», «3», то в приближённом значении оставляем две значащие цифры; если первая значащая цифра «4», «5», «6», «7», «8», «9», то в приближённом значении оставляем одну значащую цифру:

Пример	Пояснение
$0,154 \approx 0,15; 1,967 \approx 2,0$	первая значащая цифра «1», следовательно, при округлении оставляем две
$144,1 \approx 1,4 \times 10^2$	значащие цифры
$0,394 \approx 0,39; 3,94 \approx 3,9$ $0,397 \approx 0,4; 3,97 \approx 4$	первая значащая цифра «3», следовательно, оставляем две значащие цифры, но при округлении цифра «3» переходит в цифру «4», поэтому оставляем только одну значащую цифру
$0,917 \approx 0,9; 9,17 \approx 9$ $0,0977 \approx 0,10; 0,956 \approx 1,0$ $956 \approx 1,0 \times 10^{3}$	первая значащая цифра «9», следовательно, оставляем одну значащую цифру, но при округлении цифра «9» переходит в цифру «10», т.е. первая значащая цифра «1», поэтому оставляем две значащие цифры
$43,234 \pm 0,0417 \approx 43,23 \pm 0,04$ $32,3754 \pm 0,0917 \approx 32,38 \pm 0,09$	в погрешности оставляем одну значащую цифру, младший разряд — сотые, значит, в приближённом значении младший разряд — сотые

ПРИБЛИЖЁННЫЕ ЧИСЛА

приближённые числа принято записывать в стандартной форме:

 $x \times 10^n$;

zде: x — десятичное число с плавающей запятой, содержащее столько же разрядов, сколько значащих цифр у приближённого числа; n — целое число, называемое порядком числа;

значащими цифрами числа являются все цифры от первой слева отличные от нуля в его десятичном представлении, при этом цифры нули множителя 10^n , стоящие впереди не учитываются; цифры нули, стоящие в середине или в конце числа, являются значащими цифрами, т.к. обозначают отсутствие единиц в соответствующем разряде:

скорость света в вакууме **299792458** м·с⁻¹ \approx **3**×**10**⁸ м·с⁻¹; молярная газовая постоянная **8,314462618** Дж·моль⁻¹·K⁻¹ \approx **8,314** Дж·моль⁻¹·K⁻¹; молярная масса ¹²C = **11**, **9999999958**(**36**)×**10**⁻³ кг·моль⁻¹ \approx **12**× **10**⁻³ кг·моль⁻¹; плотность кислорода **0,00143** г·см⁻³ = **1,43**×**10**⁻³ г·см⁻³;

ПРАВИЛА ЗАПИСИ РЕЗУЛЬТАТОВ ВЫЧИСЛЕНИЙ

при сложении и вычитании приближённых чисел, в записи которых все цифры верные, результат округляется до последнего знака наименее точного из параметров, например, при вычислении значения 1,000 г + 1,3 г + 0,275 г результат округляется до десятых, т.е. до 2,6 г; при умножении и делении приближённых чисел следует сохранить столько значащих цифр, сколько имеет приближенное число, данное с наименьшим числом верных значащих цифр, например, если масса газа равна 2,5 г, а занимаемый газом объём составляет 1,938 л, то при вычислении плотности газа результат должен быть округлён до 1,3 г·л⁻¹, т.к. одно из чисел известно с точностью до двух значащих цифр;

при возведении в степень приближённого числа следует сохранить в результате столько значащих цифр, сколько верных значащих цифр содержит исходное число, например, $(3,4\times10^2)^3$ г = 39304000 г $\approx 3,9\times10^7$ г; т.к. в исходном числе две значащие цифры; также точно $(2,354\times10^3)^{1/2}$ г = 48,518037 г $\approx 48,52$ г

ПРАВИЛА ЗАПИСИ РЕЗУЛЬТАТОВ ВЫЧИСЛЕНИЙ

погрешность измерительного инструмента равна половине цены деления его шкалы, погрешность табличной величины равна половине следующего разряда за последней значащей цифрой; если $\rho = 2.7 \times 10^3$ кг/м³, то $\rho = (2.70 \pm 0.05) \times 10^3$ кг/м³;

если абсолютная погрешность приближенного числа не превышает единицы последнего разряда, то все значащие цифры приближенного числа называются верными, например, $\rho(\text{Hg}) = 13,5955 \text{ г/cm}^3 \approx 13,60 \times 10^3 \text{ кг/m}^3$; все цифры числа 13,60 верные, т.к. абсолютная погрешность 13,60 — 13,5955 = 0,004 меньше 0,01;

если же абсолютная погрешность приближённого числа больше единицы последнего разряда, то последняя цифра является неверной или неопределённой, например, если для объёма жидкости получена величина с точностью 140 мл \pm 5 мл; цифра 0 в числе 140 не является верной, т.к. абсолютная погрешность больше единицы последнего разряда;

не старайтесь выписывать в ответе много цифр, большая часть из которых сомнительна, какова бы ни была точность калькулятора, он не может превратить неопределённые цифры в верные!

БЕСКОНЕЧНЫЕ ДРОБИ

при делении натуральных чисел может получиться бесконечная десятичная дробь, в которой цифры повторяются, начиная с некоторого разряда; такая дробь называется периодической: 0,222..., 5,333..., 9,8777...; последовательно повторяющаяся минимальная группа цифр после запятой в десятичной записи числа называется периодом:

$$0,222... = 0,(2); 5,333... = 5,(3); 9,8777... = 9,8(7);$$

записать периодическую дробь 0,(43) в виде обыкновенной дроби: обозначим искомую дробь за X, $m.e.\ X=0$,(43); умножив это равенство на 100, получим: 100X=43,(43); вычитая первое равенство из последнего, находим: 100X-X=43,(43)-0,(43); 99X=43; X=43/99;

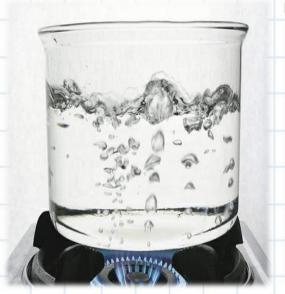
2. Запишите периодическую дробь 2,3(45) в виде обыкновенной дроби

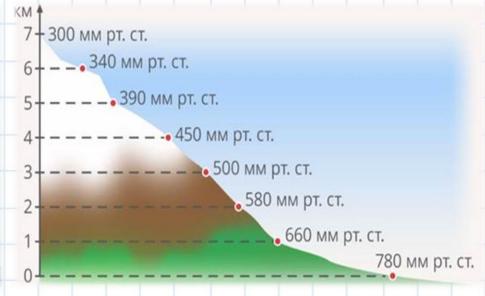
Ответ:

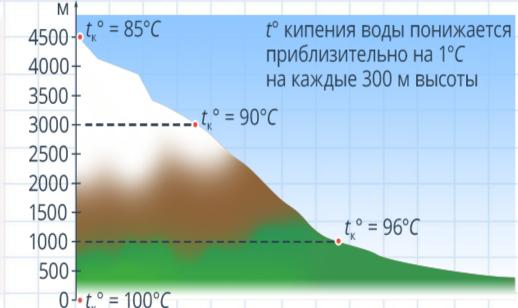
ЗАВИСИМОСТЬ ВЕЛИЧИН

если нам необходимо изменить величину, однако непосредственно на неё мы повлиять не можем, то мы можем повлиять на другую величину, от которой зависит первая величина: вам необходимо увеличить температуру кипящей воды, для этого вы можете увеличить давление в закрытом объёме, например в автоклаве;

пропорциональными называются две взаимно зависимые величины, если отношение их значений остаётся неизменным: масса вещества и его количество являются пропорциональными величинами; во сколько раз изменяется масса данного вещества, во столько же раз изменяется и его количество.




ПРОПОРЦИОНАЛЬНОСТЬ ВЕЛИЧИН


чем дольше кастрюля с водой стоит на огне, тем больше температура воды и это продлится до тех пор, пока вода в кастрюле не закипит; такие зависимости называют Прямыми: чем больше величина, тем больше зависимая ей величина и чем меньше величина, тем меньше зависимая ей величина;

чем выше мы поднимаемся в горы, тем меньше атмосферное давление; такие зависимости называют обратными: чем больше величина, тем меньше зависимая ей величина и чем меньше

величина, тем больше зависимая ей величина.

ПРОПОРЦИЯ

от латинского proportio – соразмерность, выравненность частей;

равенство $a \div b = c \div d$ называется пропорцией, если даны четыре отличных от нуля числа a, b, c и d; числа a и d называют крайними членами пропорции, а числа b и c называют средними членами пропорции;

основное свойство пропорции— произведение крайних членов пропорции равно произведению средних её членов:

если
$$a \div b = c \div d$$
, то $a \cdot d = c \cdot b$;
если $a \div b = c \div d$, то $b \div a = d \div c$ или $a \div c = b \div d$ или $d \div b = c \div a$;
если $a \div b = c \div d$, то $(a+b) \div b = (c+d) \div d$ или $(a-b) \div b = (c-d) \div d$ или $(a+b) \div (a-b) = (c+d) \div (c-d)$;
 $a \div b = c \div d = (a+c) \div (b+d) = (a-c) \div (b-d)$;

УРАВНЕНИЯ ФИЗИЧЕСКИХ ВЕЛИЧИН

	7 7 7	7 7 7				
	m	V	n	ρ	M	ω (∋)
m	кг = 10^3 г	$m = V\rho$	m = nM	$m = \rho V$	m = nM	$\mathbf{m} = \frac{\mathbf{m}(\mathfrak{I})}{\mathbf{\omega}(\mathfrak{I})}$
V	$V = \frac{m}{\rho};$ $V = \frac{mRT}{Mp}$	M^3 $M^3 = 10^3 \Lambda$ $\Lambda = 10^3 M\Lambda$ $M\Lambda = CM^3$	$V = \frac{nM}{\rho};$ $V = nV_M;$ $pV = nRT$	$V = \frac{m}{\rho}$	$V = \frac{nM}{ ho};$ $V_{\rm M} = 22, 4 \frac{\pi}{{ m MOJI}};$ $V_{\rm M} = \frac{M}{ ho}$	$\mathbf{V} = \frac{m(\mathfrak{I})}{\omega(\mathfrak{I})\rho}$
n	$n = \frac{m}{M}$	$n = \frac{V}{V_{\rm M}};$ $n = \frac{Vp}{RT}$	моль $n=rac{N_0}{N_{ m A}}$ $N_{ m A}=6{ imes}10^{23}$ моль $^{-1}$	$n = \frac{\rho V}{M}$	$n = \frac{m}{M}$	$n = \frac{\omega(\mathfrak{I})M(B)}{M(\mathfrak{I})}$
ρ	$\rho = \frac{m}{V}$	$\rho = \frac{m}{V}$	$ \rho = \frac{nM}{V} $	кг/м $^3 = 10^3$ г/мл г/л = 10^3 г/мл	$ \rho = \frac{pM}{RT}; $ $ \rho = \frac{M}{V_M} $	$\rho = \frac{m(3)}{\omega(3)V(B)}$
M	$M = \frac{m}{n}$	$M = \frac{V\rho}{n}$	$M = \frac{m}{n}$	$M = \rho V_M$	кг/моль = 10 ³ г/моль	$\mathbf{M} = \frac{\mathbf{n}(\mathbf{\theta})\mathbf{M}(\mathbf{\theta})}{\boldsymbol{\omega}(\mathbf{\theta})}$
ω (Э)	$\omega(\mathfrak{I}) = \frac{m(\mathfrak{I})}{m(B)}$	$\omega(\mathfrak{I}) = \frac{m(\mathfrak{I})}{V\rho}$	$\omega(\mathfrak{I}) = \frac{n(\mathfrak{I})M(\mathfrak{I})}{M(\mathfrak{B})}$	$\omega(\mathfrak{I}) = \frac{m(\mathfrak{I})}{V\rho}$	$\omega(\mathfrak{I}) = \frac{n(\mathfrak{I})M(\mathfrak{I})}{M(\mathfrak{B})}$	безразмерная; %

CN CN CN H CN

ЛИНЕЙНОЕ УРАВНЕНИЕ

алгебраическое уравнение, у которого полная степень составляющих его многочленов равна 1:

$$k \cdot x + y = 0;$$

если k = y = 0, то уравнение имеет бесконечное множество решений;

если k = 0; $y \neq 0$ — не имеет решений;

если $\mathbf{k} \neq 0$ — единственное решение: $-\mathbf{y}/\mathbf{k}$

 $\begin{cases} a_1 \mathbf{x} + b_1 \mathbf{y} = c_1 \\ a_2 \mathbf{x} + b_2 \mathbf{y} = c_2 \end{cases}$

система двух линейных уравнений:

система имеет единственное решение тогда и только тогда, когда:

$$a_1b_2 \neq a_2b_1;$$

3. Решите систему двух линейных уравнений:

$$\begin{cases} 2x + 5y = 12 \\ 3x - 4y = -5 \end{cases}$$

Ответ:

КВАДРАТНОЕ УРАВНЕНИЕ

алгебраическое уравнение вида:

где: a, b, c — некоторые числа; x — переменная; $a \neq 0$;

при D < 0 действительных корней нет;

при D=0 уравнение имеет один корень:

при D > 0 уравнение имеет два корня:

4. Решите уравнение:

$$\frac{1}{4}x^2 + \frac{1}{3}x - 9 = 0$$

 $ax^2 + bx + c = 0;$

$$D=b^2-4ac;$$

$$x = \frac{-b}{2a} ;$$

$$x_{1,2} = \frac{-b \pm \sqrt{D}}{2a}$$

Ответ:

РЕШЕНИЕ ЗАДАЧ

1. В природе существуют два изотопа меди — 65 Cu ($M = 64,9277895 \text{ г·моль}^{-1}$) и 63 Cu ($M = 62,9295975 \text{ г·моль}^{-1}$). Определите массовую долю 63 Cu относительного общего содержания меди в природе.

Решение:

$$ω(^{63}\text{Cu}) \cdot 62,930 \text{ г·моль}^{-1} + ω(^{65}\text{Cu}) \cdot 64,928 \text{ г·моль}^{-1} = 63,546 \text{ г·моль}^{-1}$$

$$\omega(^{63}\mathrm{Cu})\cdot 62,930\ \text{г·моль}^{-1}\ + \left(1-\omega(^{63}\mathrm{Cu})\right)\cdot 64,928\ \text{г·моль}^{-1}\ = 63,546\ \text{г·моль}^{-1}$$

$$\omega(^{63}\text{Cu}) = (64,928 - 63,546)/(64,928 - 62,930) \approx 0,692$$

2. Заряд всех электронов в бинарном кислородсодержащем двухзарядном анионе равен $(-80,0\times10^{-19}\,\mathrm{Kr})$. Определите анион и составьте формулу соответствующей кислоты.

$$n(e) = \frac{-80,0 \times 10^{-19} \,\text{K}_{\text{Л}}}{-1.6 \times 10^{-19} \,\text{K}_{\text{Л}}} = 50 \; ; \quad _{16}\text{S} \; + 4 \cdot \left(\;_{8}\text{O} \right) + 2_{-1}e = 50 \; ; \quad \text{H}_{2}\text{SO}_{4}$$

РЕШЕНИЕ ЗАДАЧ

3. Молярная масса химического элемента A в 8,2 раза больше молярной массы химического элемента B, а разность молярных масс элементов A и B составляет 115,3 г·моль⁻¹. Составьте линейную формулу соединения, образованного правильными тетраэдрическими молекулами содержащими элементы A и B.

Решение:

$$8,2x-x=115,3$$
; $x=16$; $B-{}^{16}\mathbf{0}$; $A-{}^{131,3}\mathbf{Xe}$; XeO_4

4. В состав нитрида массой 5,82 г входит металл массой 5,26 г. Определите линейную формулу искомого нитрида.

Решение:

$$m(N) = 5,82 \,\mathrm{r} - 5,26 \,\mathrm{r} = 0,56 \,\mathrm{r}; \quad n(N) = {0,56 \,\mathrm{r} / 14} \,\mathrm{r\cdot моль^{-1}} = 0,04 \,\mathrm{моль};$$

$$\exists N \equiv n(\exists) = n(N); \quad M(\exists) = \frac{5,26}{0,04} \text{ моль} = 131,50 г·моль}^{-1}(J)$$

$$\Im_3 N_2 \equiv n(\Im) = 1,5 \cdot n(N); \quad M(\Im) = \frac{5,26 \, \text{г}}{0,06 \, \text{моль}} = 87,67 \, \text{г-моль}^{-1}(\text{И}); \quad \text{Sr}_3 N_2$$

РЕШИТЕ ЗАДАЧУ

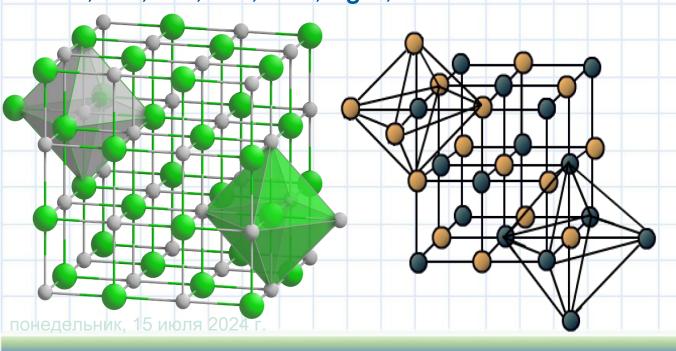
5. Массовая доля кислорода в соединении XO₂Z составляет 0,4923, а в соединении XOZ массовая доля кислорода составляет 0,3265. Определите линейные формулы искомых соединений.

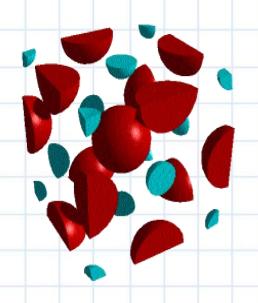
Ответ:

Na V

6. Смесь равных объёмов двух газов имеет плотность в 10 раз меньшую плотности этана при тех же условиях. Определите линейные формулы этих газов.

Ответ:


Na


КРИСТАЛЛИЧЕСКАЯ РЕШЁТКА ВЕЩЕСТВА

структура кристалла поваренной соли NaCI:

эта структура представляет собой две вложенные гранецентрированные кубические решётки ионов натрия и хлорид-ионов, причём узлы одной кристаллической решётки попадают на середины рёбер кубических ячеек другой кристаллической решётки;

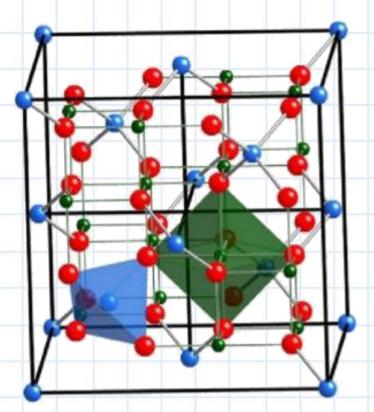
базис решётки — $8\cdot1/8 + 6\cdot1/2 = 4$ хлорид-иона и $12\cdot1/4 + 1 = 4$ иона натрия; a = 0,565 нм; $\eta = 52,3$ %; координационное число и натрия, и хлора равно 6; изоструктурными являются соединения: MgO, TiO, TiC, NaI, KCI, RbF, AgCI, SrS.

РЕШЕНИЕ ЗАДАЧ

7. **Интерметаллид с плотностью равной** 6450 кг·м⁻³ **характеризуется ОЦК** структурой типа В2 с длиной ребра 0,3015 нм (см. рис.). Данное соединение обладает уникальными свойствами: эффектом памяти формы, сверхупругостью и высокой биосовместимостью, что делает его весьма востребованным в ортопедических имплантатах. Составьте линейную формулу искомого соединения.

Решение:

$$8 \cdot \frac{1}{8} \div 1 \equiv AB$$
; $V_0 = a^3 = (0,3015 \text{ hm})^3 = 2,741 \times 10^{-29} \text{ m}^3$;


$$m_0 = V_0 \cdot \rho = 2,741 \times 10^{-29} \,\mathrm{m}^3 \cdot 6450 \,\mathrm{kr} \cdot \mathrm{m}^{-3} = 1,768 \times 10^{-25} \,\mathrm{kr}$$
;

$$M(AB) = m_0 \cdot N_A = 1,768 \times 10^{-22} \,\mathrm{r} \cdot 6,022 \times 10^{23} \,\mathrm{моль}^{-1} = 106,5 \,\mathrm{r} \cdot \mathrm{моль}^{-1};$$
 NiTi

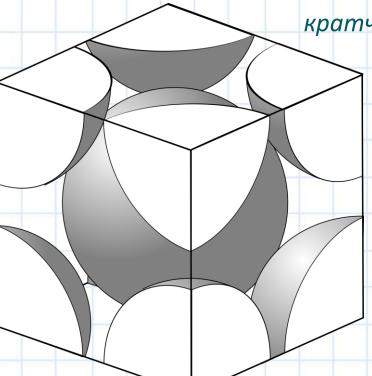
РЕШЕНИЕ ЗАДАЧИ, «ВП» 2021

8. X— одно из наиболее распространённых ферромагнитных оксидных соединений, способное образовывать стабильные коллоиды. Это вещество обладает кубической элементарной ячейкой с параметром a = 0.845 нм (см. рисунок), а плотность соединения составляет 5,306 г·см⁻³. Определите эмпирическую формулу X.

Решение:

$$8 \cdot \frac{1}{8} + 6 \cdot \frac{1}{2} + 4 = 8$$
 (синих частиц);

16 (зелёных частиц); 32(красных частиц) координационное число у зелёной частицы равно 6, а у синей частицы — 4; красные частицы — О; зелёные частицы — Fe; ЭFe₂O₄;


$$M(3) = \frac{a^3 \cdot \rho \cdot N_A}{8} - 56 \cdot 2 - 16 \cdot 4 = 65 \text{ г·моль}^{-1}; \text{ ZnFe}_2O_4$$

РЕШЕНИЕ ЗАДАЧИ, «ЮТ» 2021

9. Металл M кристаллизуется в структурном типе ОЦК-решётки с кратчайшим межатомным расстоянием l(M-M) равным 2,726 Å, плотность металла составляет 10,22 г·см $^{-3}$. Определите металл M.

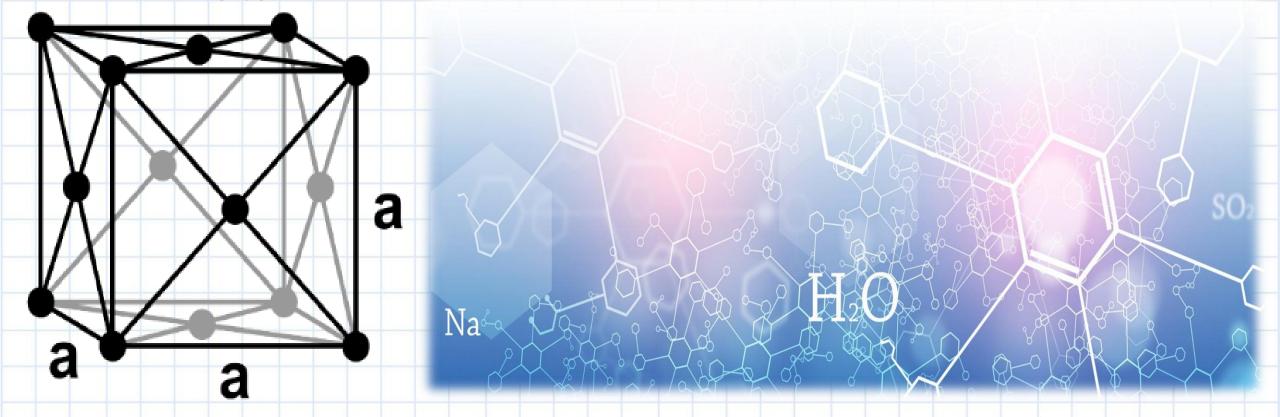
Решение:

кратчайшее расстояние соответствует половине телесной диагонали куба:

$$d = a \cdot \sqrt{3}$$
; $a = \frac{2l}{\sqrt{3}} = 3,148 \times 10^{-10} \text{ m}$;

следовательно, объём элементарной ячейки равен:

$$V_{\text{ячейки}} = \left(\frac{2 \cdot l}{\sqrt{3}}\right)^3 = 3,119 \times 10^{-29} \,\mathrm{m}^3;$$


т.к. в ячейке две частицы, то молярная масса металла составляет:

$$M(\text{Me}) = \frac{a^3 \cdot \rho \cdot N_A}{2} = 95,9 \ \text{г·моль}^{-1};$$
 Мо — молибден

РЕШИТЕ ЗАДАЧУ

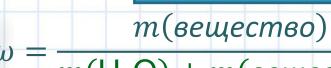
10. На рисунке представлена элементарная ячейка с параметром а = 0,405 нм, кристаллической структуры вещества X с плотностью равной 2,69 г⋅см⁻³. Определите линейную формулу вещества X.

Ответ:

m(вода)

ВОДНЫЕ РАСТВОРЫ

$$\omega($$
вещество $)=\frac{m($ вещество $)}{m($ смесь $)};$

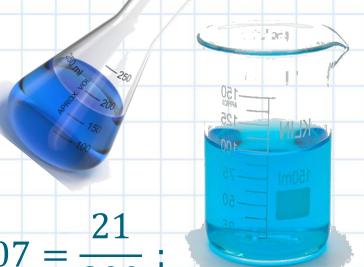

$$m(p-pa) = \rho(p-pa) \cdot V(p-pa);$$

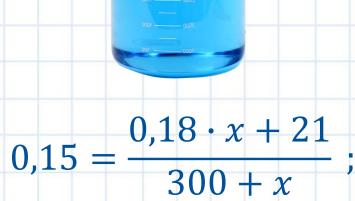
$$s = \frac{s}{mn} \cdot mn$$

$$m(FeSO_4) = n(FeSO_4 \cdot 7H_2O) \cdot M(FeSO_4);$$

$$m(вещество)$$
 $m(вода)$
 $m(раствор)$

 $ω = \frac{m(\text{вещество}) \pm \cdots}{m(\text{H}_2\text{O}) + m(\text{вещество}) \pm \cdots}$


$$m(H_2O) + m(вещество)$$


[26] Вычислите массу 18%-ого раствора медного купороса (в граммах), которую нужно добавить к 300 г 7%-ого раствора этой же соли для получения раствора с массовой долей соли равной 15%. (Запишите число с точностью до целых).

Решение:

$$0,18 = \frac{0,18 \cdot x}{x}$$

$$0.07 = \frac{21}{300} \; ;$$

$$45 + 0.15 \cdot x = 0.18 \cdot x + 21$$
; $24 = 0.03 \cdot x$; $x = 800$

[26] В таблице приведена растворимость сульфата меди(II) в граммах

на 100 г воды при различной температуре:

T (° C)	10	20	30	40	50	60	80
s (г/100 г воды)	17,2	20,5	24,4	28,7	33,7	39,5	55,5

410 г горячего 30%-го раствора сульфата меди(II) охладили до 20° С. Пользуясь данными таблицы, определите минимальный объём воды в мл, который нужно прилить в стакан к охлаждённому раствору, чтобы выпавший осадок полностью растворился. (Запишите число с точностью до целых).

Решение:

 $0,3 = \frac{123}{410}$;

 $\frac{20,5}{120,5} = 0,17;$

$$0,17 = \frac{123}{410 + x}$$

11. Определите массовую долю углекислого газа в газированной воде, если давление в 1,5 л бутылке с напитком ($\rho=1~{\rm г\cdot m}\,{\rm n}^{-1}$) при 25° С составляет 2 атм, а коэффициент растворимости диоксида углерода при данной температуре равен 0,759 л на 1 л воды.

Решение: при 25° С и давлении 2 атм в 1,5 л воды максимально может растворится:

$$V(\text{CO}_2) = 0.759 \cdot 2 \cdot 1.5 = 2.277 \,\pi$$
; $n(\text{CO}_2) = \frac{p \cdot V}{R \cdot T} = \frac{2 \cdot 101325 \cdot 0.002277}{8.314 \cdot 298.15} = 0.1862 \,\text{моль};$

$$m(CO_2) = 0.1862 \cdot 44 = 8.193 \text{ r}; \quad \omega(CO_2) = \frac{8.193}{1500} = 0.0055; \quad 0.55 \%$$

12. Из аптечного пузырька с 96 %-ным этиловым спиртом вылили 1/3 часть содержимого, а в оставшуюся часть добавили воды так, что объём раствора в сосуде составил 5/6 от начального объёма. Определите объёмное процентное содержание спирта в конечном растворе.

Решение: на 96 объёмов спирта приходится 100 объёмов раствора, тогда на 1 объём спирта приходится 100/96 объёмов раствора; когда вылили 1/3 часть раствора объём спирта уменьшился на 1/3 и составил 2/3 первоначального объёма; при добавлении воды объём раствора составил 100/96 · 5/6 = 500/576; объёмная доля спирта в конечном растворе составит: 2/3 ÷ 500/576 = 0,768; 76,8 %

13. В растворе азотной кислоты количество кислорода в 2 раза превышает количество водорода. Определите массовую долю азотной кислоты в растворе. (Запишите число с точностью до сотых).

Ответ:

14. 1 л раствора Рингера (Ringer's solution $\rho = 1,004 \, \text{г·мл}^{-1}$) содержит 8,6 г NaCl, 0,3 г KCl и 0,25 г CaCl₂·6H₂O (в пересчёте на безводный). Определите массовую долю и молярную концентрацию натрия хлорида в данном растворе.

Ответ:

Na

15. **К** 64,4 г декагидрата сульфата натрия прилили 77,6 г воды. Сколько граммов воды нужно выпарить, чтобы массовая доля сульфата натрия в полученном растворе увеличилась в 2,5 раза?

ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫЕ ПРОЦЕССЫ

Cs Rb KBa Sr Na Li Ca La Mg Be Al Mn Zn Cr Ni Sn Pb Si B As H Cu Hg P Pt Au C Se I S Br Cl N O F

 $\chi < 1.0$ $\chi < 1.8$ $\chi < 2.0$ $\chi < 2.5$ $\chi < 3.0$

реакции, проходящие с изменением степени окисления элементов, образующих реагенты;

с понижением степени окисления у окислителя и с повышением степени окисления у

восстановителя:

окислитель: $KMnO_{4 (p-p)}$; восстановитель: $H_2O_{2 (p-p)}$;

продукты: $O_{2(\Gamma)}$; $MnO_{2(TB)}$; $KOH_{(p-p)}$; $H_2O_{(ж)}$;

ионно-электронный баланс:

$$MnO_4^- + 2H_2O + 3e \rightarrow MnO_2 + 4OH^- \quad \varphi^\circ = +0.58 B$$

$$H_2O_2 + 2OH^- - 2e \rightarrow O_2 + 2H_2O \quad \varphi^{\circ} = -0.076 \text{ B}$$

$$2MnO_4^- + 3H_2O_2 + 4H_2O + 6OH^- \rightarrow 2MnO_2 + 3O_2 + 8OH^- + 6H_2O$$

$$2MnO_4^- + 3H_2O_2 \rightarrow 2MnO_2 + 3O_2 + 2OH^- + 2H_2O$$
 $E^{\circ} = 0.58 - (-0.076) = 0.656 B$

$$\frac{2KMnO_{4 (p-p)} + 3H_{2}O_{2 (p-p)}}{3O_{2 (r)} + 2MnO_{2 (TB)} + 2KOH_{(p-p)} + 2H_{2}O_{(x)}}$$

43

χ< 4,0

СОСТАВЛЕНИЕ УРАВНЕНИЯ ОВР

Cs Rb KBa Sr Na Li Ca La Mg Be Al Mn Zn Cr Ni Sn Pb Si B As H Cu Hg P Pt Au C Se I S Br Cl N O F

$$\chi < 1,0$$
 $\chi < 1,8$ $\chi < 2,0$ $\chi < 2,5$ $\chi < 3,0$ $\chi < 4,0$ $\chi < 2,5$ $\chi < 3,0$ $\chi < 4,0$ $\chi < 2,5$ $\chi < 3,0$ $\chi < 4,0$ $\chi < 2,5$ $\chi < 3,0$ $\chi < 4,0$ $\chi < 2,5$ $\chi < 3,0$ $\chi < 4,0$ $\chi < 2,5$ $\chi < 3,0$ $\chi < 4,0$ $\chi < 2,5$ $\chi < 3,0$ $\chi < 4,0$ $\chi < 2,5$ $\chi < 3,0$ $\chi < 4,0$ $\chi < 2,5$ $\chi < 3,0$ $\chi < 4,0$ $\chi < 2,5$ $\chi < 3,0$ $\chi < 4,0$ $\chi < 2,5$ $\chi < 3,0$ $\chi < 4,0$ $\chi < 2,5$ $\chi < 3,0$ $\chi < 4,0$ $\chi < 2,5$ $\chi < 3,0$ $\chi < 4,0$ $\chi < 2,5$ $\chi < 3,0$ $\chi < 4,0$ $\chi < 2,5$ $\chi < 3,0$ $\chi < 4,0$ $\chi < 2,5$ $\chi < 3,0$ $\chi < 4,0$ $\chi < 2,5$ $\chi < 3,0$ $\chi < 4,0$ $\chi < 2,5$ $\chi < 3,0$ $\chi < 4,0$ $\chi < 2,5$ $\chi < 3,0$ $\chi < 4,0$ $\chi < 2,5$ $\chi < 3,0$ $\chi < 4,0$ $\chi < 2,5$ $\chi < 3,0$ $\chi < 4,0$ $\chi < 2,5$ $\chi < 3,0$ $\chi < 4,0$ $\chi < 2,5$ $\chi < 3,0$ $\chi < 4,0$ $\chi < 2,5$ $\chi < 3,0$ $\chi < 4,0$ $\chi < 2,5$ $\chi < 3,0$ $\chi < 4,0$ $\chi < 2,5$ $\chi < 3,0$ $\chi < 4,0$ $\chi < 2,5$ $\chi < 3,0$ $\chi < 4,0$ $\chi < 2,5$ $\chi < 3,0$ $\chi < 4,0$ $\chi < 2,5$ $\chi < 3,0$ $\chi < 4,0$ $\chi < 2,5$ $\chi < 3,0$ $\chi < 4,0$ $\chi < 2,5$ $\chi < 3,0$ $\chi < 4,0$ $\chi < 2,5$ $\chi < 3,0$ $\chi < 4,0$ $\chi < 2,5$ $\chi < 3,0$ $\chi < 4,0$ $\chi < 2,5$ $\chi < 3,0$ $\chi < 4,0$ $\chi < 2,5$ $\chi < 3,0$ $\chi < 4,0$ $\chi < 2,5$ $\chi < 3,0$ $\chi < 4,0$ $\chi < 2,5$ $\chi < 3,0$ $\chi < 4,0$ $\chi < 2,5$ $\chi < 3,0$ $\chi < 4,0$ $\chi < 2,5$ $\chi < 3,0$ $\chi < 3,0$ $\chi < 4,0$ $\chi < 2,5$ $\chi < 3,0$ $\chi <$

ионно-электронный баланс:

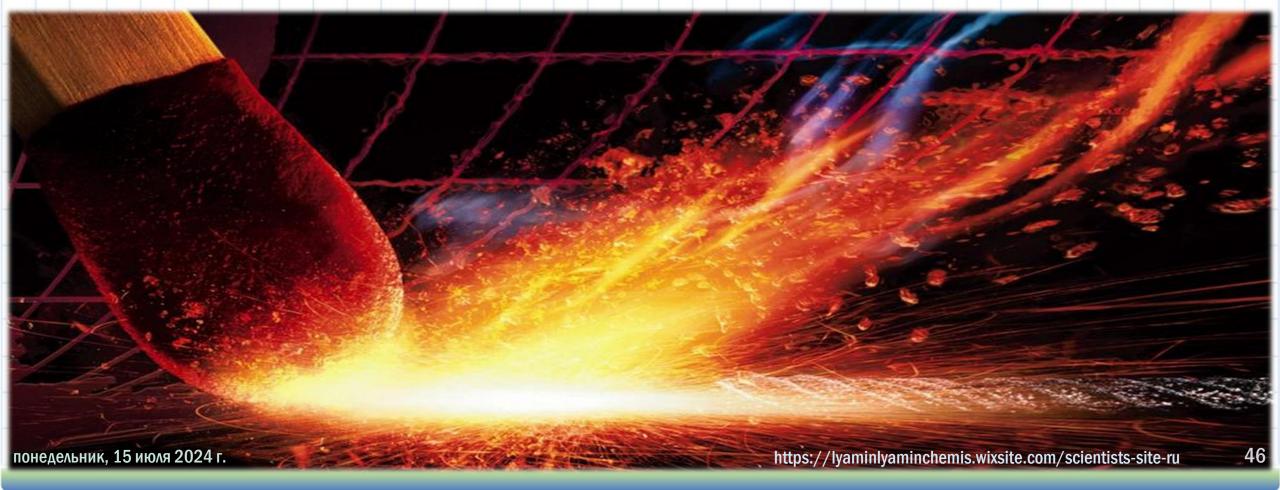
$$Cr_2O_7^{2-} + 14H^+ + 6e \rightarrow 2Cr^{3+} + 7H_2O \quad \varphi^{\circ} = +1,333 \text{ B}$$
 10 5
 $Cu_2S + 4H_2O - 10e \rightarrow 2Cu^{2+} + SO_4^{2-} + 8H^+ \quad \varphi^{\circ} = -0,307 \text{ B}$ 6 3

$$3Cu_2S_{(TB)} + 5K_2Cr_2O_7_{(p-p)} + 28H_2SO_4_{(p-p)} \longrightarrow 5Cr_2(SO_4)_3_{(p-p)} + 6CuSO_4_{(p-p)} + 10KHSO_4_{(p-p)} + 23H_2O_{(x)}$$

СОСТАВЬТЕ УРАВНЕНИЕ ОВР

Cs Rb KBa Sr Na Li Ca La Mg Be Al Mn Zn Cr Ni Sn Pb Si B As H Cu Hg P Pt Au C Se I S Br Cl N O F

$$\chi < 1.0$$
 $\chi < 1.8$ $\chi < 2.0$ $\chi < 2.5$ $\chi < 3.0$ $\chi < 4.0$
16. $NO_{(r)} + HBrO_{4 (p-p)} + H_2O_{(ж)}$ $Cl_{2 (r)} + 2Ni(OH)_{2 (TB)} + 2KOH_{(KOHЦ)}$



СОСТАВЬТЕ УРАВНЕНИЕ ОВР

Cs Rb KBa Sr Na Li Ca La Mg Be Al Mn Zn Cr Ni Sn Pb Si B As H Cu Hg P Pt Au C Se I S Br Cl N O F

 $\chi < 1,0$ $\chi < 1,8$ $\chi < 2,0$ $\chi < 2,5$ $\chi < 3,0$ $\chi < 4,0$ 17. $B_2S_{3 (тв)} + HNO_{3 (конц)} \longrightarrow$ $NaCrO_2 + ... + ... \longrightarrow Na_2CrO_4 + NaBr + ...$

КИСЛОТНО-ОСНОВНЫЕ ПРОЦЕССЫ

Cs Rb KBa Sr Na Li Ca La Mg Be Al Mn Zn Cr Ni Sn Pb Si B As H Cu Hg P Pt Au C Se I S Br Cl N O F

 $\chi < 1.0$ $\chi < 1.8$ $\chi < 2.0$ $\chi < 2.5$ $\chi < 3.0$ $\chi < 4.0$

реакции, реакции обмена между кислотой и основанием;

в продуктах образуются вещества, содержащие анион кислоты и катион основания:

$$HCI_{(p-p)} + NaOH_{(p-p)} \longrightarrow NaCI + H_2O$$

$$CuSO_{4 (p-p)} + 2NaOH_{(p-p)} \longrightarrow Cu(OH)_{2 (TB)} + Na_2SO_{4 (p-p)}$$

$$CH_3COOH_{(p-p)}$$
 + NaHCO_{3 (p-p)} \longrightarrow Na(CH₃COO)_(p-p) + CO_{2 (r)} + H₂O_(ж)

$$2H_3PO_{4(p-p)} + 3Ca(OH)_{2(p-p)} \longrightarrow Ca_3(PO_4)_{2(TB)} + 6H_2O_{(x)}$$

$$H_3PO_{4 (p-p)} + Ca(OH)_{2 (p-p)} \longrightarrow CaHPO_{4 (TB)} + 2H_2O_{(x)}$$

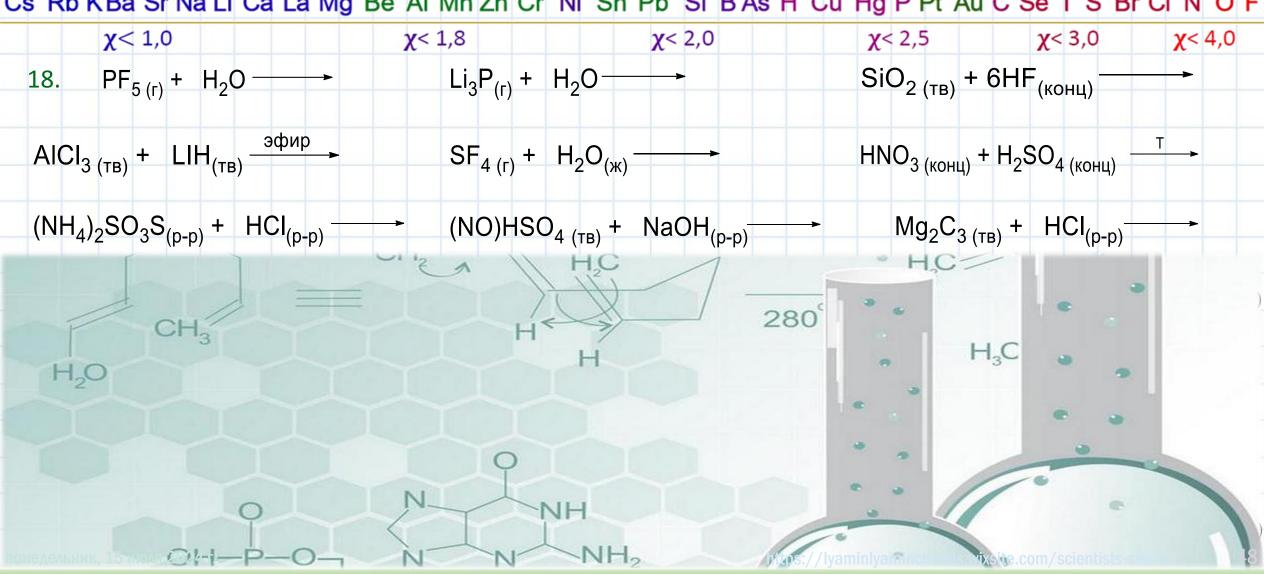
$$2H_2SO_4_{(p-p)} + Ca_3(PO_4)_2_{(TB)} \longrightarrow 2CaSO_4_{(p-p)} + Ca(H_2PO_4)_2_{(p-p)}$$

амфотерные свойства:

$$H_2SO_4_{(p-p)} + Zn(OH)_{2 (TB)} \longrightarrow ZnSO_4_{(p-p)} + 2H_2O_{(x)} \qquad 3HCI_{(p-p)} + AI(OH)_{3 (TB)} \longrightarrow AICI_{3 (p-p)} + 3H_2O_{(x)}$$

$$Zn(OH)_{2 \text{ (TB)}} + 2NaOH_{(p-p)} \longrightarrow Na_2[Zn(OH)_4]_{(p-p)}$$
 $Al(OH)_{3 \text{ (TB)}} + 3NaOH_{(p-p)} \longrightarrow Na_3[Al(OH)_6]_{(p-p)}$

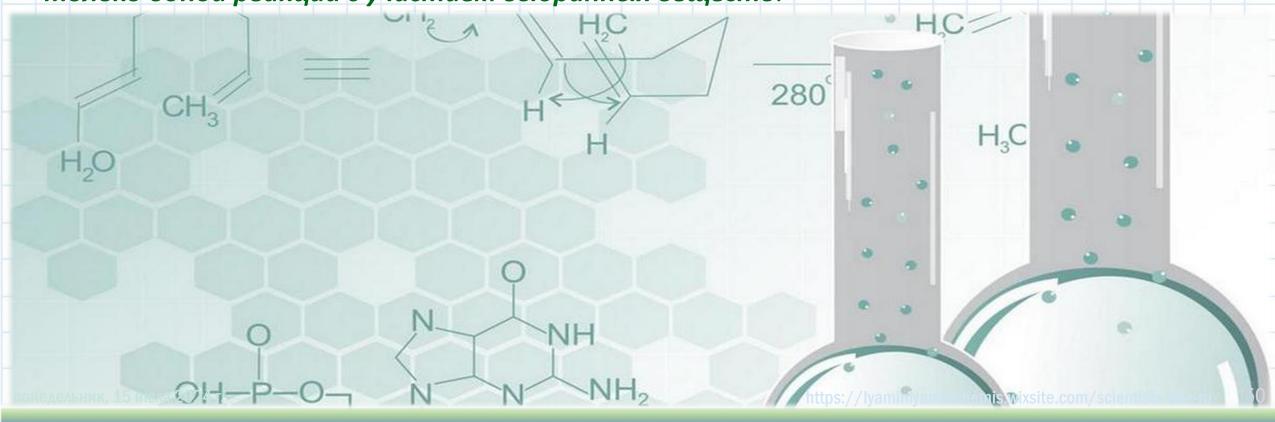
$$Zn(OH)_{2 \text{ (TB)}} + 2NaOH_{\text{(TB)}} \xrightarrow{\mathsf{T}} Na_2ZnO_{2 \text{ (p-p)}} + 2H_2O_{(\Gamma)} \qquad Al(OH)_{3 \text{ (TB)}} + NaOH_{\text{(TB)}} \xrightarrow{\mathsf{T}} NaAlO_{2 \text{ (p-p)}} + 2H_2O_{(\Gamma)}$$


натрия метацинкат

ttps://llyaminlyaminchemis.wixsite.com/scientists-site-ru

СОСТАВЬТЕ УРАВНЕНИЕ КИСЛОТНО-ОСНОВНОЙ РЕАКЦИИ

Cs Rb KBa Sr Na Li Ca La Mg Be Al Mn Zn Cr Ni Sn Pb Si B As H Cu Hg P Pt Au C Se I S Br Cl N O F


РЕАКЦИИ ИОННОГО ОБМЕНА

в водном растворе реакции между ионами, в соответствии с принципом минимума энергии, проходят с образованием осадка, летучего соединения — газа, комплексного соединения, малодиссоциирующего вещества — вода, слабый электролит:

- 1) формулы реагентов-электролитов реакции ионного обмена записывают в ионной форме, используя таблицу растворимости кислот, оснований и солей в воде;
- 2) по таблице растворимости кислот, оснований и солей в воде определяют продукты реакции ионного обмена— нерастворимые в воде соединения; газы; вода; комплексные ионы;
- 3) ионы не участвующие в образовании продукта в сокращённом уравнении не указывают;
- 4) расставляют коэффициенты в соответствии с законом сохранения заряда:

19. Из предложенного перечня веществ: гидрофосфат натрия, хлор, гидроксид кальция, азотная кислота, иод, бромид калия (допустимо использование водных растворов веществ), выберите вещества, между которыми возможна реакция ионного обмена, проходящая с образованием осадка. Запишите молекулярное, полное и сокращённое ионное уравнения только одной реакции с участием выбранных веществ.

МАТЕРИАЛЬНЫЙ БАЛАНС

1.	Выделите, что требуется найти:	Найти:

2. Составьте уравнение(я) химической(их) реакции(ий) и матрицу материального баланса;

 уравнение реакции

 реагенты
 → продукты

 исходное количество

 реагирующее количество

 остаток

- 3. Все известные величины: масса, объём и др. переведите в количество и в соответствии со стехиометрическими коэффициентами заполните таблицу
- 4. Найденное количество вещества выразите в требуемых единицах.

[23] В замкнутый стальной реактор поместили смесь, содержащую 0,4 моль/л азота, 0,7 моль/л водорода и аммиак на катализаторе. Реактор нагрели. В результате в реакционной смеси установилось химическое равновесие: $2NH_{3 (r)} \rightleftarrows N_{2 (r)} + 3H_{2 (r)}$ при этом концентрация азота в смеси составила 0,2 моль/л, а концентрация аммиака

при этом концентрация азота в смеси составила 0,2 моль/л, а концентрация аммиака составила 0,5 моль/л; определите исходную концентрации аммиака (X) и равновесную концентрацию водорода (Y). Выберите из списка номера правильных ответов.

1) 0,4 моль/л	Решение:	N _{2 (Γ)}	+ 3H _{2 (r)}	2NH _{3 (Γ)}
2) 0,2 моль/л	исходное	0,4	0,7	0.5 - 0.4 = 0.1
3) 0,5 моль/л 4) 0,7 моль/л	реагирующее	0,4-0,2=0,2	0,6	0 ,4
5) 0.9 моль/л	остаток	0,2	0.7 - 0.6 = 0.1	0,5

6) 0,1 моль/л

Запишите в таблицу номера выбранных веществ под соответствующими буквами.

Ответ:	X	Υ
	6	6

[27] Взаимодействие диоксида серы с сероводородом выражается уравнением:

$$SO_{2(r)} + 2H_2S_{(r)} = 3S_{(TB)} + 2H_2O_{(r)} + Q$$

Определите тепловой эффект реакции (в кДж), если при образовании 8 г серы выделяется 12 кДж тепла. (Запишите число с точностью до целых.).

Все известные величины переводим в количество:

Значение количества заносим в матрицу материального баланса:

 $\frac{8}{32} = 0.25$

 $\cdot 12 = 144$

Тогда значение теплоты в уравнении составит:

	SO _{2 (Γ)}	+ 2H ₂ S _(Γ)	= 3S _(тв)	+ 2H ₂ O _(r) -	+ Q
исходное			3		144
реагирующее			A		A I
остаток			0,25		> 12

Ответ: 144

0,25

[28] Вычислите объём газа (в литрах), выделившегося при растворении образца карбоната бария массой 15 г, содержащего 5% инертных примесей, в избытке соляной кислоты. (Запишите число с точностью до десятых.).

Составляем уравнение химической реакции:

Все известные величины переводим в количество:

Значение количества заносим в матрицу:

Тогда объём диоксида углерода составит:

<u> </u>	- 0.05 -	x = 0.75;
15 =	- 0,05,	x = 0,75
15 -	- 0,75	0.070
_		= 0 072

	BaCO _{3 (тв)}	+ 2HCl _(p-p) =	BaCl _{2 (p-p)}	+ 2H ₂ O _(p-p) +	CO _{2 (Γ)} ↑
исходное	0,072				
реагирующее	0,072 1				
остаток	0		0,072	2:0,072	0,072
			≪		

 $0.072 \cdot 22.4 = 1.62 \approx 1.6$

[28] При полном прокаливании образца гидроксида алюминия массой 51,8 г, загрязнённого хлоридом натрия, масса твёрдого остатка составила 35,6 г. Вычислите массовую долю хлорида натрия (в процентах), в твёрдом остатке после прокаливания. (Запишите число с точностью до целых.).

Составляем уравнение химической реакции:

Все известные величины переводим в количество:

Значение количества заносим в матрицу:

Тогда масса гидроксида алюминия составит:

А доля хлорида натрия составит:

51,8 - 35,6	= 0.9
18	_ 0,9

$$0.6 \cdot 78 = 46.8$$

$$\frac{51,8 - 46,8}{35,6} = 0,14$$

	$2AI(OH)_{3(TB)} =$	$Al_2O_{3 (TB)}$	+	3H ₂ O _(r) ↑
исходное	0,6			- /
реагирующее	0,6			- /
остаток	0			0,9

[34] Два стакана одинаковой массы, в одном из которых содержится 200 г 5,13 %-го раствора гидроксида бария, а во втором — 200 г 10,95 %-ой соляной кислоты, поставили на весы. В первый стакан пропускали углекислый газ до прекращения выпадения осадка. Во второй стакан добавили такое количество фосфида магния, что весы уравновесились. Определите массовые доли веществ в конечном растворе во втором стакане.

		$Ba(OH)_2$	$FCO_2 = BaCC$	$J_3 + H_2O$; $6HCI + Mg_3P_2$	$= 3 \text{MgCl}_2 + 2 \text{PH}_3 \uparrow$
исх	кодное кол-во	0,06	0,06	-	0,6 X (0,04)	
pea	агирующее кол-во	0,06	0,06	-	6X (0,24) X (0,04)	
ОСТ	гавшееся кол-во	0	0,06	0,06	0,6 - 0,24 0	3X (0,12) 2X (0,08)

 $n(\text{Ba}(\text{OH})_2) = 0.0513 \cdot 200 \text{ г/171 г/моль} = 0.06 \text{ моль};$ $n(\text{HCI}) = 0.1095 \cdot 200/36,5 \neq 0.6 \text{ моль};$ $200 + \text{m}(\text{CO}_2) = 200 + \text{m}(\text{Mg}_3\text{P}_2) - \text{m}(\text{PH}_3); 200 + 0.06 \cdot 44 = 200 + 134x - 2x \cdot 34; x = 0.04$ $m_{\text{ост}}(\text{HCI}) = (0.6 - 0.24) \text{моль} \cdot 36.5 \text{ г/моль} = 13.14 \text{ г; } m_{\text{(p-pa)}} = 200 + 0.04 \cdot 134 - 0.08 \cdot 34 = 202.64 \text{ г; } \omega(\text{HCI}) = 13.14 \text{ г/}202.64 \text{ г} = 0.0648; \omega(\text{MgCI}_2) = 0.12 \text{ моль} \cdot 95 \text{ г/моль}/202.64 \text{ г} = 0.0563$

[34] Смесь фосфида лития и нитрида лития, массовая доля протонов в которой составляет 46 % от массы смеси растворили в соляной кислоте массой 200 г с массовой долей 36,5 % хлороводорода. При этом выделилось 5,6 л газа. Определите массовую долю кислоты в конечном растворе.

	Li ₃ P -	+ $3HCI = 3LiCI + PH_3 \uparrow$;	Li ₃ N +	4HCI =	3LiCI + NH ₄ CI
исходное кол-во	0,25	2	X (0,2)	1,25	
реагирующее кол-во	0,25	0,75	X (0,2)	4X (0,8)	
оставшееся кол-во	0	1,25 0,75 0,25	0	0,45	3X (0,6) X (0,2)

$$n(PH_3) = 5,6/22,4 = 0,25$$
 моль; $n(HCI) = 200 \cdot 0,365/36,5 = 2$ моль; $n(Li_3N) = X$

тогда: (16x + 6)/(35x + 13) = 0.46; $n(Li_3N) = 0.2$ моль;

$$m_{\text{oct}}(\text{HCI}) = 0.45 \cdot 36.5 = 16.425 \text{ r}; m_{\text{(p-pa)}} = 200 + 0.25 \cdot 52 + 0.2 \cdot 35 - 0.25 \cdot 34 = 211.5 \text{ r};$$

$$\omega(HCI) = 16,425/211,5 = 0,078; \text{ Ответ: } \omega(HCI) = 7,8 \%$$

[23] В реакторе постоянного объёма смешали угарный газ и водород в мольном соотношении 1:3. Через некоторое время в системе установилось равновесие:

 $CO_{(r)} + 2H_{2(r)} \rightleftharpoons CH_3OH_{(r)}$

при этом исходная концентрация водорода была равна 1,5 моль/л, а равновесная концентрация оксида углерода(II) составила 0,1 моль/л. Определите равновесные концентрации метанола (X) и водорода (Y). Выберите из списка номера правильных

ответов.

1) 0,1 моль/л

2) 0,3 моль/л

3) 0,4 моль/л

4) 0,5 моль/л

5) 0,7 моль/л

6) 1,2 моль/л

20. Навеску нитрата меди(II) и нитрата серебра массой 31,55 г растворили в 400 мл воды и подвергли полученный раствор электролизу с инертными электродами. Процесс остановили, когда в растворе не осталось катионов металла. В ходе электролиза через цепь прошло 0,275 моль электронов. Вычислите массовую долю азотной кислоты в полученном растворе, если известно, что в ходе процесса на катоде газ не выделялся. В ответе запишите уравнения реакций, которые указаны в условии задачи, и приведите все необходимые вычисления (указывайте единицы измерения искомых физических величин).

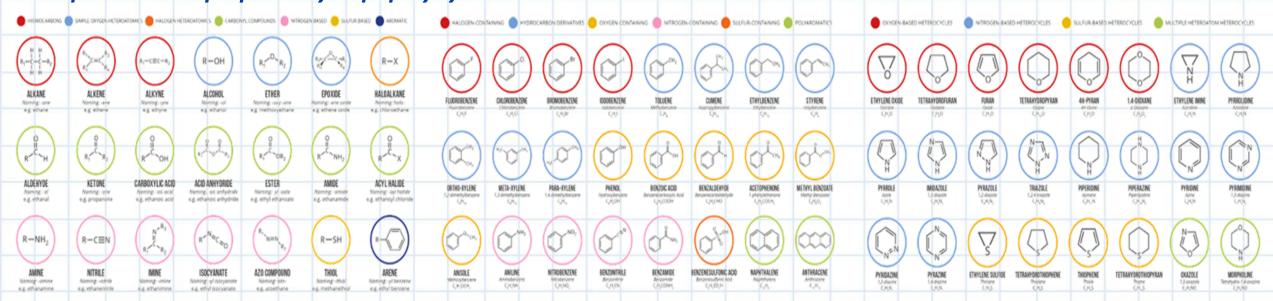
21. Через 640 г 15 %-ного раствора сульфата меди(II) пропускали электрический ток до тех пор, пока на аноде не выделилось 11,2 л (н.у.) газа. К образовавшемуся раствору добавили 665,6 г 25 %-ного раствора хлорида бария. Определите массовую долю хлорида бария в полученном растворе. В ответе запишите уравнения реакций, которые указаны в условии задачи, и приведите все необходимые вычисления (указывайте единицы измерения искомых физических величин)

22. Определите минимальную массу фосфорного ангидрида необходимого для полного осушения 1 M^3 воздуха при 27° C с относительной влажностью воздуха равной 51,5 %, если парциальное давление насыщенного водяного пара при данной температуре составляет 3567 $H \cdot M^{-2}$

23. В химическом реакторе с рабочим объёмом 200 м³ при температуре 450°°C и под давлением 250 атм находятся 47469,2 л азота и 142540 л водорода. Какое давление по истечении времени установится в реакторе при 25°°C, если количество азота в конечной смеси относительно исходной сократилось наполовину?

- 24. При температуре 200°°C и давлении 1 атм жидкость (A) без цвета и без запаха массой 90 г, используемая при криоконсервации тканей, разлагается с образованием удушливого газа (E) и токсичного газа (D) общим объёмом 155 л. При нагревании такой же навески вещества (A) до 500°°C при атмосферном давлении в присутствии оксида алюминия и алюмосиликатов образуется 127 л ядовитого газа (C). При внесении вещества (A) в горячий раствор серной кислоты выделяется газ (D), а при внесении этого же вещества в горячий раствор щёлочи выделяется газ (E).
- 1. Определите вещества А, С, D, Е, дайте им систематические названия.
- 2. Напишите уравнения всех химических реакций, указанных в задании.

РЕШИТЕ ЗАДАЧУ, «ВП» 2022


25. N_2O_4 нагрели до 30° C, после чего образовалась газовая смесь, имеющая плотность по водороду равную 40. Определите степень диссоциации N_2O_4 . (В ответе напишите число процентов с точностью до целых)

ОПРЕДЕЛЕНИЕ ГРАФИЧЕСКОЙ ФОРМУЛЫ ВЕЩЕСТВА

- 1. По описанию свойств искомого вещества определить качественную характеристику состава вещества: элементный состав, наличие кратных связей, расположение кратных связей, наличие функциональных групп;
- 2. По числовым данным определить количественное отношение образующих искомое соединение элементов;
- 3. По количественным отношениям элементов и качественной характеристике вещества определить графическую формулу искомого соединения.

ОСНОВНЫЕ УРАВНЕНИЯ

$$H_{\chi}C_{V}O_{k}N_{z}$$
 $x = n(H); y = n(C); k = n(O); z = n(N);$

$$n(\mathfrak{I}) = \frac{\omega(\mathfrak{I}) \cdot M(B-BA)}{M(\mathfrak{I})};$$

$$x \div y \div k \div z = n(\mathsf{H}) \div n(\mathsf{C}) \div n(\mathsf{O}) \div n(\mathsf{N}) = \frac{\omega(\mathsf{H})}{M(\mathsf{H})} \div \frac{\omega(\mathsf{C})}{M(\mathsf{C})} \div \frac{\omega(\mathsf{O})}{M(\mathsf{O})} \div \frac{\omega(\mathsf{N})}{M(\mathsf{N})};$$

$$n(C) = n(CO_2); n(H) = 2 \cdot n(H_2O); n(N) = 2 \cdot n(N_2);$$

$$n(O) = \frac{m(B-Ba) - n(C) \cdot M(C) - n(H) \cdot M(H) - n(N) \cdot M(N)}{M(O)};$$

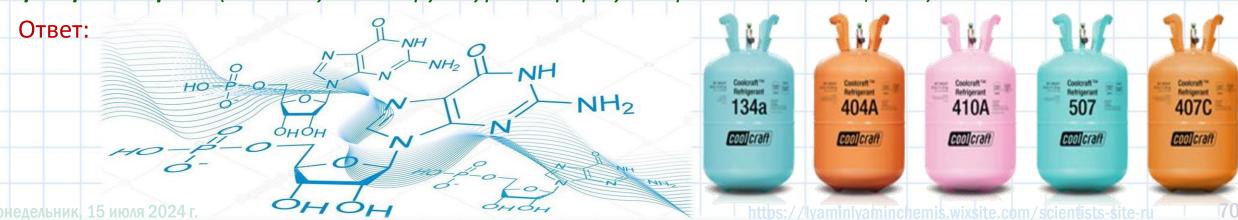
$$n(\Gamma a3a) = \frac{p \cdot V}{R \cdot T};$$
 $\rho(\Gamma a3a) = \frac{p \cdot M(\Gamma a3a)}{R \cdot T};$ $V_M = 22,41396954 \dots \times 10^{-3} \text{ м}^3 \cdot \text{моль}^{-1};$ $R = 8,314 \ 462 \ 618 \dots \ Дж \cdot \text{моль}^{-1} \cdot \text{K}^{-1};$

[34] При сжигании образца вещества (A) массой 5,1 г получили 5,6 л (н.у.) углекислого газа и пары воды. Массовая доля кислорода в соединении (A) в 3,2 раза превышает массовую долю водорода. При нагревании в присутствии кислоты искомое вещество подвергается гидролизу с образованием двух продуктов, один из которых вступает в реакцию «серебряного зеркала», а второй устойчив к окислению оксидом меди(II).

На основании данных условия задания:

- 1) проведите необходимые вычисления (указывайте единицы измерения физических величин) и установите молекулярную формулу исходного органического вещества (А);
- 2) составьте структурную формулу этого вещества, которая однозначно отражает порядок связи элементов в его молекуле;
- 3) напишите уравнение реакции гидролиза исходного вещества в кислой среде (используйте структурные формулы органических веществ).

[34] При сжигании образца вещества (A) массой 5,1 г получили 5,6 л (н.у.) углекислого газа и пары воды. Массовая доля кислорода в соединении (A) в 3,2 раза превышает массовую долю водорода. При нагревании в присутствии кислоты искомое вещество подвергается гидролизу с образованием двух продуктов, один из которых вступает в реакцию «серебряного зеркала», а второй устойчив к окислению оксидом меди(II).


[34] При сжигании образца вещества (A) массой 5,1 г получили 5,6 л (н.у.) углекислого газа и пары воды. Массовая доля кислорода в соединении (A) в 3,2 раза превышает массовую долю водорода. При нагревании в присутствии кислоты искомое вещество подвергается гидролизу с образованием двух продуктов, один из которых вступает в реакцию «серебряного зеркала», а второй устойчив к окислению оксидом меди(II).

26. При медленном окислении на воздухе 4,78 г органического вещества образовалось 3,96 г фосгена и 896 мл хлороводорода (н.у.). При обработке данного вещества двухкратным избытком фтророводорода образуется газ — фреон.

На основании данных условия задания:

- 1) проведите необходимые вычисления (указывайте единицы измерения физических величин) и установите молекулярную формулу исходного органического вещества;
- 2) составьте структурную формулу этого вещества, которая однозначно отражает порядок связи элементов в его молекуле;
- 3) напишите уравнение взаимодействия неизвестного вещества с двухкратным избытком фтороводорода (используйте структурные формулы органических веществ).

27. Вещество A содержит 11,97 % азота, 9,40 % водорода, 27,35 % кислорода по массе и образуется при взаимодействии вещества Б с пропанолом-2. Известно, что Б имеет природное происхождение и взаимодействует, и с кислотами, и со щелочами.

На основании данных условия задания:

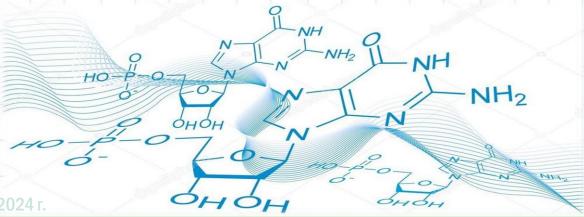
1) проведите необходимые вычисления (указывайте единицы измерения физических величин) и установите молекулярную формулу исходного органического вещества;

2) составьте структурную формулу этого вещества, которая однозначно отражает порядок связи элементов в его молекуле;

3) напишите уравнение реакции получения вещества А из вещества Б и пропанола-2 (используйте

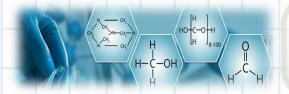

структурные формулы органических веществ).

Ответ:




Wixsite com/scientists site rul

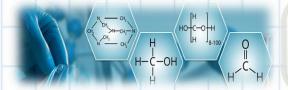
How



- 28. При сжигании образца вещества массой 5,22 г получили 5,376 л (н.у.) углекислого газа и 3,78 г воды. При нагревании в растворе кислоты данное вещество подвергается гидролизу с образованием двух продуктов, один из которых имеет состав $C_2H_6O_2$. На основании данных условия задания:
- 1) проведите необходимые вычисления (указывайте единицы измерения физических величин) и установите молекулярную формулу исходного органического вещества;
- 2) составьте структурную формулу этого вещества, которая однозначно отражает порядок связи элементов в его молекуле;
- 3) напишите уравнение реакции гидролиза исходного вещества в кислой среде (используйте структурные формулы органических веществ).

- 29. Бесцветное кристаллическое чрезвычайно токсичное вещество без запаха представляет собой химически инертное соединение, нерастворимое в щелочах, в кислотах и в воде. В состав данного соединения входят: C 44,72%, O 9,94%, CI 44,10%. В структуре соединения имеются четыре идентичных симметрично расположенных заместителя, а углерод находится только в Sp^2 -гибридном состоянии.
- 1) проведите необходимые вычисления и установите молекулярную формулу исходного соединения;
- 2) составьте структурную формулу этого вещества, которая однозначно отражает порядок связи элементов в его молекуле;
- 3) напишите уравнение реакции синтеза данного вещества из 2,4,5-трихлорфенола (используйте структурные формулы органических веществ).

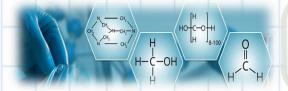
30. При полном гидролизе 26,7 г дипептида, образованного природными аминокислотами и содержащего аминогруппу у вторичного атома углерода, масса продуктов на 2,7 г превысила массу дипептида.


На основании данных условия задания:

- 1) проведите необходимые вычисления (указывайте единицы измерения физических величин) и установите молекулярную формулу исходного дипептида;
- 2) составьте структурную формулу этого вещества, которая однозначно отражает порядок связи элементов в его молекуле;

3) напишите уравнение реакции полного гидролиза исходного дипептида в избытке гидроксида

калия (используйте структурные формулы органических веществ).


31. При сгорании 90,4 г органического вещества получили 35,84 л (н.у.) диоксида углерода, 17,92 л (н.у.) оксида углерода(II), 35,84 л (н.у.) хлороводорода и 57,60 г воды; данное вещество при нагревании с водным раствором гидроксида калия подвергается гидролизу, одним из продуктов которого является соединение состава C_3H_6O .

На основании данных условия задания:

- 1) проведите необходимые вычисления (указывайте единицы измерения физических величин) и установите молекулярную формулу исходного вещества;
- 2) составьте структурную формулу этого вещества, которая однозначно отражает порядок связи атомов в его молекуле;
- 3) напишите уравнение реакции полного гидролиза исходного соединения в избытке гидроксида калия (используйте структурные формулы органических веществ).

Ответ:

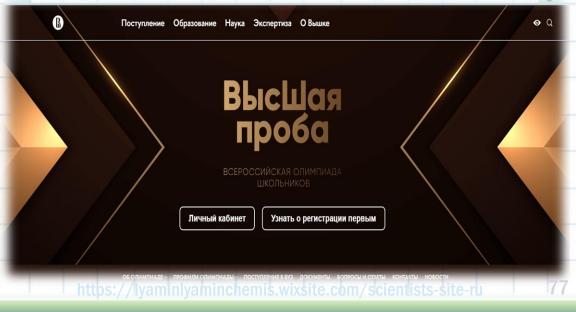
https://lyaminlyaminchemis.wixsite.com/scientists-site-ru

32. При сжигании 20,1 г вещества (A) образовалось 26,88 л углекислого газа, 13,5 г воды и 3,36 л азота. При исследовании свойств вещества (A) установлено, что углерод в веществе (A) находится только в sp²-гибридном состоянии и один моль вещества (A) способен реагировать с 2 молями водорода с образованием вторичного амина.

На основании данных условия задания:

- 1) проведите необходимые вычисления (указывайте единицы измерения физических величин) и установите молекулярную формулу вещества (А);
- 2) составьте структурную формулу этого вещества, которая однозначно отражает порядок связи элементов в его молекуле;
- 3) **напишите уравнение реакции вещества (A) с избытком водорода** (используйте структурные формулы органических веществ).

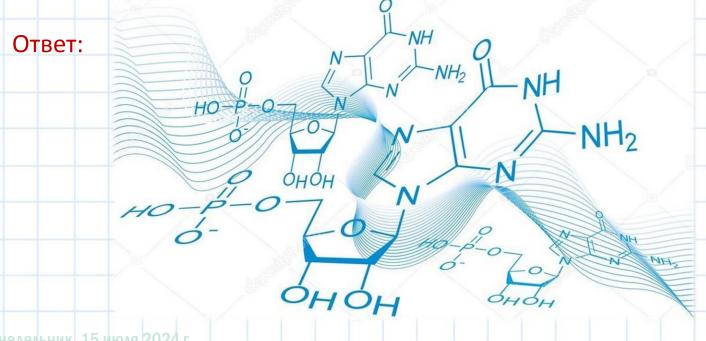
Ответ:

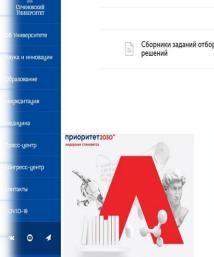

NH₂

OHOH

РЕШИТЕ ЗАДАЧУ, «ВП» 2022

33. При полном сгорании органического соединения М массой 0,500 г ($D_{H_2}(M) = 44$) образуется 1,250 г углекислого газа и 0,614 г воды. Соединение М реагирует с натрием с выделением водорода, а при его окислении образуется соединение N, не реагирующее с аммиачным раствором оксида серебра. Нагревание вещества М с концентрированной серной кислотой приводит к образованию углеводорода O, при окислении которого в жёстких условиях образуется кетон P, и кислота Q. Определите строение веществ M, N, O, P, Q и дайте им системные названия. Составьте уравнения всех химических реакций, указанных в задании и укажите условия их осуществления (используйте структурные формулы органических веществ).



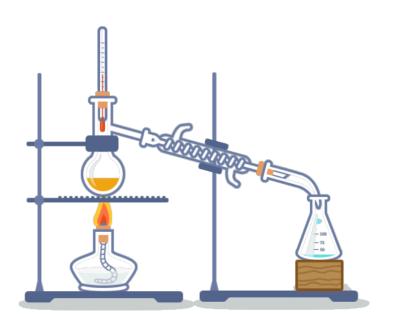


РЕШИТЕ ЗАДАЧУ, «СЕЧЕНОВ» 2021

34. Элемент X входит в состав природных минералов и обладает способностью поглощать нейтроны. Это определяет важнейшую роль Х-содержащих материалов в ядерной энергетике в качестве замедлителей ядерных процессов и в биологической защите. Х входит в состав вещества — бесцветной жидкости, молекулы которой изоэлектронны молекуле бензола и имеют аналогичное строение.

Составьте графическую формулу данного соединения Х.

«Список победителей и призеров Всероссийской Сеченовской олимпиады школьников 2020-202:



СПАСИБО ЗА РАБОТУ!

Лямин Алексей Николаевич

доцент, к.п.н., Почётный работник общего образования РФ, ФГБОУ ВО Кировский ГМУ ЦДП г. Киров

